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ne of the most vexing problems in investment management is

that diversification seems to disappear when investors need it

the most. Of course, the statement that “all correlations go to 1
in a crisis” is both an oversimplification and an exaggeration. But it has
been well documented that correlations tend to increase in down mar-
kets, especially during crashes (i.e., “left-tail events”). Studies have shown
this effect to be pervasive for a large variety of financial assets, including
individual stocks, country equity markets, global equity industries, hedge
funds, currencies, and international bond markets.! Interestingly, most of
these studies were published before the 2008 global financial crisis. Yet,
the failure of diversification during the crisis, when left-tail correlations
jumped significantly, seemed to surprise investors.

Moreover, the inescapability of the failure of diversification across
markets that we document may continue to surprise investors. Our
goal in this article is to encourage practitioners to take action on such
findings. Full-sample correlations are misleading. Prudent inves-
tors should not use them in risk models, at least not without adding
other tools, such as downside risk measures and scenario analyses.
To enhance risk management beyond naive diversification, investors
should reoptimize portfolios with a focus on downside risk, consider
dynamic strategies, and depending on aversion to losses, evaluate
the value of downside protection as an alternative to asset class
diversification.

The Myth of Diversification

Based on a precrisis data sample ending in February 2008, Chua,
Kritzman, and Page (2009) documented significant “undesirable
correlation asymmetries” for a broad range of asset classes. Not only
did correlations increase on the downside, but they also significantly
decreased on the upside. This asymmetry is the opposite of what
investors want. Indeed, who wants diversification on the upside?
Upside unification (or antidiversification) would be preferable. During
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good times, we should seek to reduce the return
drag from diversifiers.

Despite the wide body of published research, we
believe many investors still do not fully appreciate
the impact of correlation asymmetries on portfo-
lio efficiency—in particular, on exposure to loss.
During left-tail events, diversified portfolios may
have greater exposure to loss than more con-
centrated portfolios. Leibowitz and Bova (2009)
showed that during the 2008 global financial crisis,
a portfolio diversified across US stocks, US bonds,
international stocks, emerging market stocks, and
REITs saw its equity beta rise from 0.65 to 0.95,
and the portfolio unexpectedly underperformed a
simple 60% US stocks/40% US bonds portfolio by
9 percentage points.

In this article, we expand the analysis of Chua et al.
(2009) in several ways. We include post-2008 data,
we cover a broader set of markets, and we take an
in-depth look at what drives correlations in numer-
ous markets. As for methodology, we introduce a
data-augmentation technique to improve the robust-
ness of tail correlation estimates, and we analyze
the impact of return data frequency on private asset
correlations.

Measuring Tail Correlations

How correlations change during extreme markets
can be estimated in several ways. For example,
Longin and Solnik (2001) and Chua et al. (2009) used
“double conditioning.” They isolated months during
which both assets moved (up or down) by at least a
given percentage. We used a similar approach, but
we conditioned on a single asset, as follows:

p(6) =

corr(x,y | x > 9) ifo>0
corr(x,y | x < 6) if6 <0

where x and y represent the two assets, 0 is the
return threshold below or above which we partitioned
the data, and p(6) is the conditional correlation.

Unlike Longin and Solnik’s (2001) approach, “single
conditioning” measures differences in tail correla-
tions based on which market drove the selloff. For
some correlations, such as the stock-bond correla-
tion, this difference can be substantial, and it adds
information on the correlation structure. For exam-
ple, we wanted to evaluate the effectiveness of bond

20 cfapubs.org

diversification during US stock market selloffs (the
flight-to-safety effect). First, we isolated months in
our data sample during which US stocks, x, were
down by, say, 5% or more (we calibrated thresholds,
0, to correspond to percentiles). Next, we calculated
a correlation between stocks and bonds in this
subsample, denoted corr(x,y | x < —5%).

We also calculated the correlation between stocks
and bonds when bonds, y, were down by 5% or more,
denoted corr(x,y | y < -5%). As we will show, in
this case, we found that bonds diversify stocks
during stock selloffs but stocks do not diversify
bonds during bond selloffs. Double conditioning
would fail to reveal this lack of symmetry in the
diversification between the two assets.

Potential Biases

Irrespective of how we partitioned the data, we
expected subsample correlations to differ from
full-sample estimates, even for a joint normal
distribution. To measure this “conditioning bias,”
we first simulated how correlations change when
moving toward the left and right tails of a bivari-
ate normal distribution. For each asset pair, we
simulated two normal distributions with the same
full-sample correlations, means, and volatilities as
those we observed empirically. Then, we com-
pared the empirical subsample correlations with
their simulated normal counterparts. Differences
indicate departures from normality. Also, under
normality, downside and upside correlation profiles
should be identical. Therefore, when left-tail and
right-tail correlations are compared, the condition-
ing bias does not matter much because it “washes
out.” Any asymmetry we found indicates a depar-
ture from normality.

Another possible bias arises because extreme cor-
relations rely on few data points. The further one
goes into the tails, the smaller the sample. At the

top or bottom 1% or 5% of the distribution, a single
outlier may significantly bias correlations up or down.
To increase robustness in our estimates, therefore,
we augmented subsamples with data from the rest
of the distribution. To do so, we used an exponen-
tially weighted approach, as illustrated and derived
in Appendix A. To our knowledge, this approach,
although simple and intuitive, has not been used in
prior studies; hence, perhaps we are making a mod-
est methodological contribution to the measurement
of conditional correlations.
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We calibrated the model in such a way that obser-
vations further into the tails receive exponentially
larger weights, and we fixed the half-life at the
percentile under consideration. For comparison,

we also report unadjusted conditional correlations.
We found that the data-augmentation methodol-
ogy generates estimates similar to those calculated
conventionally, in terms of magnitude and direction-
ality. Our estimates tend to be less noisy, however,
and are generally less sensitive to outliers.

An important point regarding the conditioning bias is
that we applied the same exponential adjustment to
the corresponding simulated normal data. Hence, in
all cases, comparisons between empirical and normal
correlations are apples-to-apples.

The Failure of Diversification in

International Equity Portfolios

The material in this section on US equity cor-
relation with international equity will illustrate

our approach. First, based on monthly data from
January 1970 to June 2017,2 we calculated condi-
tional correlations between US stocks (MSCI US
Total Return Index) and non-US stocks (MSCI EAFE

Figure 1. Conditional

Conditional Correlation (%)

When Diversification Fails

Total Return Index).3 We conditioned correlations
by percentile, based on the returns of US stocks. In
Figure 1, we show how correlations changed from
the worst selloffs in US stocks (1st percentile) to
their strongest rallies (99th percentile). For compari-
son, the dotted line shows the correlation profile
that we would expect if both markets were normally
distributed. In the normal case, we would expect
perfect symmetry between upside and downside
correlations and conditional correlations would
gradually decrease as we move toward the tails.

As Figure 1 demonstrates, empirical correlation
profiles differ substantially from their normally
distributed counterparts. When US stocks were ral-
lying (in their 99th percentile), their correlation with
non-US stocks dropped all the way to -17%. During
the worst 1% selloffs in US stocks, however, their
correlation with non-US stocks rose to +87%. This
asymmetry reveals that international diversification
works only on the upside. Longin and Solnik (2001),
focusing on the correlations between the United
States, France, Germany, the United Kingdom, and
Japan, reported similar results for stocks at the
country level.

Correlation Profile for 100

US vs. Non-US Stocks,
January 1970-June 2017 80 \¥

Empirical

60 |-
40 L

20

-20 1

1 20

Selloffs

40 60 80 100

Percentiles in US Stock Returns Rallies

Notes: US stocks are represented by the MSCI US Total Return Index, and non-US stocks are
represented by the MSCI EAFE Total Return Index in local currency. Empirical conditional
correlations were adjusted by the data-augmentation methodology.
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The Failure of Diversification across
Risk Assets

We found similar results across risk assets. Figure 2
provides a comparison of left-tail and right-tail correla-
tions for key asset classes.# The focus is on US stocks
versus other risk assets because the equity risk factor
dominates the volatility factor (and exposure to loss)
in most portfolios (see, for example, Page 2013). Note
that we used bond returns net of duration-matched
US Treasuries (i.e., “excess returns”) to isolate credit
risk factors. We also show results for style and size
diversification within stocks. Most investors select
equity funds—and thereby seek to diversify their
portfolios—based on style/size characteristics. Across

the board, left-tail correlations in Figure 2 are much
higher than right-tail correlations.

Studies on tail dependence corroborate these findings.
Garcia-Feijéo, Jensen, and Johnson (2012) showed
that when US equity returns are in their bottom 5%,
non-US equities, commodities, and REITs also experi-
ence significantly negative returns—beyond what
would be expected from full-sample correlations.
Hartmann, Straetmans, and de Vries (2010) showed
that currencies co-crash more often than would be
predicted by a bivariate normal distribution. Hartmann
et al. (2004) estimated that stock markets in G-5
countries were two times more likely to co-crash

than were bond markets. Van Oordt and Zhou (2012)
extended pairwise analysis to joint tail dependence

Figure 2. Left-Tail vs. 100
Right-Tail Correlations
for Key Risk Assets, June

2017
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Notes: EM is emerging market. Monthly data, with start dates based on availability (see Appendix
B, available online at www.cfapubs.org/doi/suppl/10.2469/faj.v74.n3.3, for start dates and data
sources). Left-tail and right-tail correlations are at the 1st and 99th percentiles but were adjusted
by the data-augmentation methodology. Full correlation profiles (adjusted, unadjusted, and
normal) are shown in Appendix B.
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across multiple markets and reached similar conclu-
sions. They suggested a related approach to measure
the systemic importance of financial institutions.
These studies ignored asymmetries, however,
between the left and right tails. They either focused
on the left tail or used symmetrical measures of tail
dependence, such as the joint t-distributions.

Regarding credit asset classes, the Merton (1974)
model explains why credit and equity returns
become more correlated in the left tail. Merton
defined a corporate bond as a combination of

e arisk-free bond—in normal times, the bondhold-
ers’ upside risk is limited to the regular coupon
payments and return of principal—and

e ashort put position on the company’s assets. If
the company’s asset value depreciates below its
debt, bondholders become long the company'’s
assets and receive what'’s left through bank-
ruptcy proceedings. (Meanwhile, as the stock
price goes to zero, stockholders are wiped out.)

Hence, as a company approaches default, the market
starts to expect that bondholders will be left holding
the company’s remaining assets. Merton explained
that “as the probability of eventual default becomes
large, . . . the risk characteristics of the debt approach
that of (unlevered) equity” (463). In this context,
Naik, Devarajan, Nowobilski, Page, and Pedersen
(2016) argued it was not a surprise that during the
2008 crisis, credit and equity returns became highly
correlated.

Diversification fails across styles, sizes, geographies,
and alternative assets. Essentially, all the return-
seeking building blocks that asset allocators typically
use for portfolio construction are affected. The
asymmetry for the stock-MBS (mortgage-backed
securities) correlation is notable. Chua et al. (2009)
used precrisis data, and at the time of their study,
MBS were one of the few asset classes that seemed
to decouple from stocks in down markets. During the
fourth quarter of 2008, however, which is included
in our data sample, MBS clearly joined the ranks of
“risk-on” assets.

Hedge Fund Styles and

Diversification

Beyond traditional asset classes, investors have
increasingly looked to alternatives for new or special-
ized sources of diversification. For Figure 2, we used
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a broad hedge fund index, but one could argue that
hedge fund styles are so different from each other
that they should be treated as separate asset classes.
So, in Figure 3, we show a comparison of left-tail and
right-tail correlations of seven hedge fund styles ver-
sus US stocks. Unfortunately, all the styles, including
the market-neutral funds, exhibit significantly higher
left-tail than right-tail correlations

A simple explanation could be that most hedge

fund strategies are short volatility. Some are also
short liquidity risk, which is akin to selling an option
(Bhansali 2010). Agarwal and Naik (2004) explained
jumps in hedge fund left-tail equity betas through
the Merton (1974) lens. They observed that “a wide
range of hedge fund strategies exhibit returns similar
to those from writing a put option on the equity
index” (92). In a related study, Billio, Getmansky, and
Pelizzon (2012) used a regime-switching model to
measure hedge fund correlations and market betas
over time. They showed that the average jump in cor-
relations for hedge fund strategies in financial crises
was +33%.

What about Private Assets?

Although many investors have become skeptical of
the diversification benefits of hedge funds, the belief
in the benefits of direct real estate and private equity
diversification has been persistent. Over the past
few years, institutional investors have significantly
increased their allocations to private assets. The
advisory firm Willis Towers Watson reports that as
of the end of 2016, pension funds, wealth managers,
and sovereign wealth funds held more than $2 trillion
in direct real estate and private equity investments
(Flood 2017). Money has flowed into these asset
classes partly because of their perceived diversifica-
tion benefits. Consultants have used mean-variance
optimization in asset allocation or asset/liability stud-
ies to make a strong case for increased allocations.
Alternative assets are often sold as free lunches
because they seem to offer high returns with low
volatility and great diversification properties.

Most investors know, however, that there is more to
these statistics than meets the eye. Private assets’
reported returns suffer from the smoothing bias. In
fact, Pedersen, Page, and He (2014) showed that the
private assets’ diversification advantage is almost
entirely illusory. On a marked-to-market basis, these
asset classes are exposed to many of the same fac-
tors that drive stock and bond returns.

cfapubs.org 23



Financial Analysts Journal | A Publication of CFA Institute

Figure 3. Left-Tail vs. 100

Right-Tail Correlations for
Hedge Fund Styles, June
2017
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Notes: Left-tail and right-tail correlations are at the 1st and 99th percentiles but were
adjusted by the data-augmentation methodology. See also the notes to Figure 2.

Not only is the true equity risk exposure of private
assets higher than is implied by their reported
returns on average, but their left-tail exposures are
much higher. In Figure 4, we show a comparison

of quarterly to rolling annual (four-quarter) left-tail
correlations with equity for direct real estate and
private equity. Full correlation profiles are reported
in Appendix B (available online at www.cfapubs.org/
doi/suppl/10.2469/fajv74.n3.3).

Rolling annual correlations are less sensitive to the
smoothing bias than those calculated on quarterly
returns. As explained in Pedersen et al. (2014),
reported quarterly returns for private assets
represent a moving average of the true (unob-
served) marked-to-market returns. Also, the authors
showed that private assets, after their smoothing
bias is removed, have exposure to credit risk, which
does not, as we have shown, truly diversify equity
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risk in times of market stress. Moreover, liquid-

ity risk contributes to the asymmetry of private
asset returns even more than to the asymmetry of
hedge fund returns. Page, Simonian, and He (2011)
explained that systemic liquidity risk tends to mani-
fest itself during stock market crashes. A systemic
liquidity crisis can be compared with a burning
building, in which everyone is rushing for the door,
with one exception: In financial markets, to get out
(sell), investors must find someone to take their
place in the building (a buyer).

Risk Factors and the Diversification
Benefits of Short Positions

The failure of diversification across public and private
return-seeking asset classes has led, in part, to the
popularity of risk factors. Bender, Briand, Nielsen,
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Figure 4. Left-Talil
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Notes: Left-tail correlations are at the 1st (bottom) percentile but were adjusted by the data-
augmentation methodology. See also the notes to Figure 2.

and Stefek (2010); Page and Taborsky (2011); limanen
and Kizer (2012); and many others have argued that
risk factor diversification is more effective than asset
class diversification. For Figure 5, we thus applied

the methodology we used in Figures 2 and 3 to risk
factors. Again, we focused on diversification versus
US stocks. Our results show that several risk factors
do indeed appear to be more immune to the failure of
diversification than are asset classes.

Idzorek and Kowara (2013) and Cocoma, Czasonis,
Kritzman, and Turkington (2017) pointed out,
however, that risk factors are not inherently superior
building blocks. They deliver better diversification
than traditional asset classes simply because they
allow short positions and often encompass a broader
universe of assets. For example, the size and value
factors in equities are often defined as long-short
security-level portfolios. But if factor definitions are
restricted to linear combinations of asset classes and
short positions are allowed for all asset classes as
well as risk factors, then risk factors do not deliver
any efficiency gains over asset classes. In a sense,
the argument in favor of risk factor diversification is
more about the removal of the long-only constraint
and the expansion of the investment universe than
anything else.

In addition, momentum strategies that sell risk assets
in down markets provide left-tail diversification.

Volume 74 Number 3

Portfolio insurance strategies, for example, can
explicitly replicate a put option (minus the gap-risk
protection). Hence, as expected, in Figure 5, currency
and cross-asset momentum have much lower left-tail
than right-tail correlations with US stocks.

Our results also show, however, that risk-on factors,
such as size (i.e., small minus big stocks) and currency
carry, may fail to diversify stocks when needed.
Small-cap stocks tend to have higher equity betas
than large-cap stocks, and this difference in market
beta exposure is often expressed during stock mar-
ket drawdowns. Similarly, the currency carry trade
has an indirect equity beta exposure that remains
dormant until risk assets sell off. The strategy goes
long high-interest-rate currencies (the Australian
dollar, emerging market currencies, etc.) and funds
these positions by shorting low-interest-rate curren-
cies (e.g., the Japanese yen). In normal markets, the
investor earns a risk premium because forward rates
typically do not appreciate or depreciate enough

to offset profits (the “carry”) from the interest rate
differential embedded in currency forward contracts.
But when risk assets sell off, the carry trade unwinds
as investors sell the higher-risk currencies and buy
the safe havens. In a sense, many carry strategies
behave like the credit risk premium. These strategies
are like being short an option, and investors some-
times refer to the tired adage “picking up pennies in
front of a steamroller” to describe them.
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Figure 5. Left-Tail vs. 100
Right-Tail Correlations for
Risk Factors, June 2017

80

60

40

20

-20

-40

-60

-80

-100

> ®» T E T ¢ g E > ®» T E T ¢ g E
s 53 6 3 © =2 =2 3 L 53 6 3 o© =2 =2 3
(3 = = s [ @ += (3v] s +<= s © ol +=
O 4 o 5 9 > > S O 2 9 S © > > S
> g 2 ¢ L e > € > £ 2 ¢ L e > £
g B [3] [] @ %] o B (] [3] & (%}
S < 0 o 2] a qC) o 8 = ] o n a g o
E s 22 2z 3t 2 E s 22 2 % £ 2
5 ES¥ 583z S ES®¥SEG e
© & 3 g 3 ¢ Y g © & 3 g 3 ¢ Y ¢
e & < & O £ e & < & O £
N c A Py = N c A o =
w 5 8 3 o v 5 38 3 o
= [l + Y
c O c O
[0} > (0] >
IS €
S S
> >
Left-Tail Correlations (stock selloffs) Right-Tail Correlations (stock rallies)

Notes: Monthly data with start dates based on availability (see Appendix B, available online
at www.cfapubs.org/doi/suppl/10.2469/faj.v74.n3.3, for start dates and data sources).

The value (security selection) and momentum (security selection) factors are long-short,
rank-weighted models of US individual stocks. The cross-asset value and momentum factors
allocate to equity indexes, currencies, rates, and commodities, also with a long-short, rank-
weighted methodology. Left-tail and right-tail correlations are at the 1st and 99th percen-
tiles but were adjusted by the data-augmentation methodology. Full correlation profiles
(adjusted, unadjusted, and normal) are shown in Appendix B. For value and momentum, we
used data from Asness, Moskowitz, and Pedersen (2013; data available at www.aqr.com).
The size factor is from Fama and French (1993). All three currency factors are long-short, as
calculated by Deutsche Bank.

Regime Shifts and Investor

left-tail correlations. But what causes regime shifts?
A partial answer is that macroeconomic fundamen-

Sentiment tals themselves exhibit regime shifts, as documented
The example of the currency carry trade illus- for inflation and growth data.>

trates the impact of regime shifts on correlations,

which may explain the widespread risk-on/risk-off Also, we surmise that investor sentiment plays a large
characteristic of return-seeking asset classes and role. In normal markets, differences in fundamentals
risk factors. Financial markets tend to fluctuate drive diversification of risk asset returns. During pan-
between a low-volatility state and a panic-driven, ics, however, investors often “sell risk” irrespective of
high-volatility state (see, e.g., Kritzman, Page, and differences in fundamentals. Huang, Rossi, and Wang
Turkington 2012). In fact, Ang and Bekaert (2015) (2015), for example, showed that sentiment is a com-
directly linked the concept of regime shifts to rising mon factor that drives both equity and credit-spread
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returns—beyond the effects of default risk, liquidity,
and macro variables—and suggested that sentiment
often spills over from equities to the credit markets.

Apparently, in financial markets, fear is more contagious
than optimism. Related studies in the field of psychol-
ogy suggest that to react more strongly to bad news
than good news is human nature. In a paper titled

“Bad Is Stronger Than Good,” Baumeister, Bratslavsky,
Finkenauer, and Vohs (2001, 1) explained,

The greater power of bad events over good
ones is found in everyday events, major life
events, close relationship outcomes, social
network patterns, interpersonal interactions,
and learning processes. . . . Bad information is
processed more thoroughly than good. ... From
our perspective, it is evolutionarily adaptive for
bad to be stronger than good.

Is the Stock-Bond Correlation the

Only True Source of Diversification?

When market sentiment suddenly turns negative and
fear grips markets, government bonds almost always
rally because of the flight-to-safety effect (Gulko 2002).
In a sense, duration risk may be the only true source of
diversification in multi-asset portfolios. Therefore, the
expected stock-bond correlation is one of the most
important inputs to the asset allocation decision.

Figure 6. Conditional

Conditional Correlation (%)

When Diversification Fails

In Figure 6, we show the empirical stock-bond condi-
tional correlation profile and its normally distributed
benchmark. Unlike results for other correlations,

this profile is highly desirable: Bonds decouple from
stocks in bad times and become positively correlated
with stocks in good times.

The stock-bond correlation is difficult to estimate,
however, and can change drastically with macroeco-
nomic conditions.® Johnson, Naik, Page, Pedersen,
and Sapra (2014) explained that when inflation and
interest rates drive market volatility more than busi-
ness cycles and risk appetites do, the stock-bond
correlation often turns positive. For example, the
authors showed that the 12-month stock-bond cor-
relation during the 1970s and 1980s was mostly pos-
itive. Since 2008, central bank stimulus and declining
rates have artificially pushed valuations higher

in both the stock and bond markets. This type of
“sugar high” can unwind quickly if policy normalizes
unexpectedly. The “taper tantrum” of 2013, when
Ben Bernanke first mentioned the idea of reducing
or “tapering” the Fed'’s stimulus, provides a good
example. It affected stocks and bonds negatively at
the same time. Starting valuations can compound the
effect. The higher the valuations in both stocks and
bonds, the more fragile their correlation.

To illustrate how bond selloffs can lead to a posi-
tive stock-bond correlation, Figure 7 is based on
the same data as in Figure 6, but the conditional
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Notes: Monthly data. For Treasuries, we used the Barclays Capital Long U.S. Treasury
Index. Results were similar for the Barclays U.S. Treasury Bond and the Barclays Capital
Intermediate U.S. Treasury Indexes (not reported).
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correlations are reversed. We estimated the stock-
bond correlation as a function of percentiles in bond
returns instead of stock returns.

The correlation profile is not as desirable as when we
conditioned on stock returns. Although the correla-
tions are generally low, when bonds sell off, stocks
can sell off at the same time. Ultimately, investors
should remember that stocks and bonds both repre-
sent discounted cash flows. Unexpected changes to
the discount rate or inflation expectations can push
the stock-bond correlation into positive territory—
especially when other conditions remain constant.

Caveats on Measuring and
Forecasting Diversification

We have shown that during crises, diversification
across risk assets almost always fails, and even
the stock-bond correlation may fail in certain
market environments. As a caveat, we advise the
reader that conditional correlations represent only
one way to measure diversification. Conditional
betas, for example, take into account changes

in relative volatilities as well as correlations. In
theory, it is possible for the correlation between
two assets to increase while the volatility of the
diversifier decreases relative to the main engine
of growth in the portfolio. In this case, a spike in
correlation may be offset by decreasing relative

Figure 7. Conditional

Conditional Correlation (%)

volatilities, which could lead to a lowered stress
beta and, perhaps, lower exposure to loss than
expected. However, prior studies based on betas
(e.g., Leibowitz and Bova 2009), on co-crash prob-
abilities (Hartmann et al. 2004, 2010), and on tail
dependence (Garcia-Feijoo et al. 2012) have shown
such outcomes to be highly improbable. Ultimately,
we chose to study correlations as they measure
diversification directly, and correlations have been
used widely in prior studies.

Another caveat is that we did not forecast left-tail
events; hence, although we know that correlations
are likely to increase if markets sell off, we do not
necessarily know when this shift will take place.
Equity selloffs are, almost by definition, unexpected.
Investors can prepare for the failure of diversifica-
tion, however, without the need to time markets.
Consider as an analogy that although it is almost
impossible for aircraft pilots to predict when they
will encounter air turbulence, passengers can

take comfort in the fact that airplanes are built to
withstand it.

Recommendations for Asset

Allocation

We recommend that investors avoid the use of
full-sample correlations in portfolio construction—
or, at least, that they stress-test their correlation

Correlation Profile for 40
Treasuries vs. US Stocks, 30 L
January 1973-June 2017

Empirical
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Notes: Monthly data. See the notes to Figure 6.
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assumptions. Scenario analysis, either historical or
forward looking, should take a bigger role in asset
allocation than it does. A wide range of portfolio
optimization methodologies directly address nonnor-
mal left-tail risk and, ipso facto, the failure of diver-
sification. The most flexible is full-scale optimization
(see, e.g., Cremers, Kritzman, and Page 2005; Sharpe
2007; Adler and Kritzman 2007).

These analytics are widely available, but they are
often used on a “post-trade” basis—that is, after
portfolio construction has taken place. Investors
should use such tail-aware tools as part of “pre-
trade” decisions. To do so will reveal that equity
regions, styles, sizes, and sectors—as well as
credit, alternative assets, and risk factors—do
not diversify broad equity risk as much as aver-
age correlations suggest. To be clear, we are not
arguing against diversification across traditional
asset classes, but investors should be aware that
traditional measures of diversification may belie
exposure to loss in times of stress. Investors
should calibrate their risk tolerance (against return
opportunities) accordingly.

In addition, significant emphasis should be put on

the stock-bond correlation and consideration of
whether it will continue to be negative in the future.
Shocks to interest rates or inflation can turn this
correlation positive. In such situations, strategies that
use leverage to increase the contribution to the risk
of bonds—risk parity, for example—may experience
unexpected drawdowns.

Finally, investors should look beyond diversifica-
tion to manage portfolio risk. Tail-risk hedging
(with equity put options or proxies), risk factors
that embed short positions or defensive momen-
tum strategies, and dynamic risk-based strategies
all provide better left-tail protection than tradi-
tional diversification. The strategy of managed
volatility is a particularly effective and low-cost
approach to overcome the failure of diversification.
Based on the empirical observation that risk is
more predictable than return, this strategy adjusts
the asset mix over time to stabilize a portfolio’s
volatility. It is portable and can easily be applied

as an overlay to smooth the ride for almost any
portfolio. Importantly, because managed volatility
scales down risk assets when volatility is high, it
often offsets left-tail correlation spikes and thereby
reduces exposure to large losses without sacrific-
ing returns on the upside.”
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A Final Word

In an apocryphal story, a statistician who had his
head in the oven and his feet in the freezer exclaimed,
“On average, | feel great!” Similarly, as a measure of
diversification, the full-sample correlation is an aver-
age of extremes. Conditional correlations reveal that
during market crises, diversification across risk assets
almost completely disappears. Moreover, diversifica-
tion seems to work remarkably well when investors
do not need it—during market rallies. This undesirable
asymmetry is pervasive across markets.

Our findings are not new, but we proposed a robust
approach to measure left- and right-tail correlations,
and we documented the extent of the failure of
diversification on a large dataset of asset classes
and risk factors. The good news is that tail risk-
aware analytics, as well as hedging and dynamic
strategies, are now widely available to help inves-
tors manage the failure of diversification.

Appendix A. Data-Augmentation
Methodology for Robust Tail
Correlations: 10th Percentile
Example

Figure Al shows the 10th percentile example:

Define the ith observation of the jth random variable
to be

{x,!'},i=1, oMj=1 .. ,N

That is, there are N random variables (assets), each
with M observations (monthly data points). Assume
the observations are sorted in ascending order with
respect to x* so that X} < x5 < ... < xY. For
percentile p, define the exponential weight function,

—(i-1) log(2)
wl(i) = wge oM Li=1,.,M

’

where wg is chosen so that Zfilw(i) =1

The exponentially weighted covariance matrix C has
components

€ = Swlfrk ~u) 1)

k=1
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Note: The 10th percentile has half the weight of the minimum observation.

is the sample mean of the jth random variable. Then,
define the left-tail weighted correlation measure as

ij :
JCiVCj
Similarly, the data can be sorted in descending order

with respect to x* so that x% > x% > x,%,, to get
the right-tail correlation measure.
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Notes

1. See, for example, Ang, Chen, and Xing (2002), Ang and
Chen (2002), and Hong, Tu, and Zhou (2007) on indi-
vidual stocks; Longin and Solnik (2001) on country equity
markets; Ferreira and Gama (2004) on global industries;
Van Royen (2002) and Agarwal and Naik (2004) on hedge
funds; Hartmann, Straetmans, and de Vries (2010) on
currencies; and Cappiello, Engle, and Sheppard (2006) on
international equity and bond markets.

2. Most asset allocators use monthly data for portfolio
construction, but to test for robustness, we also used
daily—as well as rolling 5-day, 10-day, and 21-day—
data to replicate all analyses presented here (replication
results available upon request). We excluded asset classes
for which daily data were not available. We used rolling
windows because they help reduce biases that may result
from time-of-day effects in daily data. As expected, our
results were robust—and remarkably similar to those
reported throughout this article.
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4.

. Disclosure about MSCI data: MSCI makes no express or

implied warranties or representations about its data and
has no liability whatsoever with respect to any MSCI data
in this article. The MSCI data may not be further redistrib-
uted or used as a basis for other indexes or any securities
or financial products. This report has not been approved,
reviewed, or produced by MSCI.

Appendix B (available online at www.cfapubs.org/doi/
suppl/10.2469/faj.v74.n3.3) contains our data sources
and the full correlation profiles (with and without data
augmentation).

See, for example, Kim (1993) and Kumar and Okimoto
(2007) on inflation and Hamilton (1989), Goodwin (1993),
Luginbuhl and de Vos (1999), and Lam (2004) on GDP/GNP
growth.
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6. See, for example, Wainscott (1990); Li (2004); Gulko
(2002); Andersson, Krylova, and Vahamaa (2008); Baele,
Bekaert, and Inghelbrecht (2010); and Johnson, Naik, Page,
Pedersen, and Sapra (2014).

When Diversification Fails

7. Several empirical studies support this conclusion. See
Dreyer, Harlow, Hubrich, and Page (2016), which includes
a review of the literature on managed volatility, as well as
Moreira and Muir (2017) for a recent and comprehensive
set of backtests.
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